Land Use Classification of Remote Sensing Image with Gis Databased on Spatial Data Mining Techniques

نویسنده

  • Deren LI
چکیده

Data mining techniques are studied to discover knowledge from GIS database and remote sensing image data in order to improve land use classification. Two learning granularities are proposed for inductive learning from spatial data, one is spatial object granularity, the other is pixel granularity. The characteristics and application scope of the two granularities are discussed. We also present an approach to combine inductive learning with conventional image classification methods, which selects class probability of Bayes classification as learning attributes. A land use classification experiment is performed in the Beijing area using SPOT multi-spectral image and GIS data. Rules about spatial distribution patterns and shape features are discovered by C5.0 inductive learning algorithm and then the image is reclassified by deductive reasoning. Comparing with the result produced only by Bayes classification, the overall accuracy increased 11 percent and the accuracy of some classes, such as garden and forest, increased about 30 percent. The results indicate that inductive learning can resolve the problem of spectral confusion to a great extent. Combining Bayes method with inductive learning not only improves classification accuracy greatly, but also extends the classification by subdivide some classes with the discovered knowledge.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using remote sensing data and GIS to evaluate air pollution and their relationship with land cover and land use in Baghdad City

The research used the satellite image (Landsat 7 ETM ) within the thermal infrared sixth band (TIR6) and geographic information system (GIS) to determine the air pollution and its relationship with the land cover (LC) and land use (LU) of Baghdad city. Concentration of total suspended particles (TSP), lead (Pb), carbon oxides (CO, CO2), and sulphur dioxide (SO2) were obtained from 22 ground mea...

متن کامل

Palarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm

Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...

متن کامل

Application of remote sensing and geographical information system in mapping land cover of the national park

The study was conducted with the objective of mapping landscape cover of Nechsar National park in Ethiopia to produce spatially accurate and timely information on land use and changing pattern. Monitoring provides the planners and decision-makers with required information about the current state of its development and the nature of changes that have occurred. Remote sensing and Geographical Inf...

متن کامل

Prominence of Spatial Database in Geographical Information Systems

Spatial Database is a collection of spatially referenced data that acts as a model of reality. Geographical Information System includes spatial data which is either in raster or vector form and data derived from remote sensors are increasingly utilized as source for GIS. Spatial data is the core part of the Geographical Information System. Data mining techniques are studied to discover knowledg...

متن کامل

GeoDMA - Geographic Data Mining Analyst

Remote sensing images obtained by remote sensing are a key source of data for studying large-scale geographic areas. From 2013 onwards, a new generation of land remote sensing satellites from USA, China, Brazil, India and Europe will produce in one year as much data as 5 years of the Landsat-7 satellite. Thus, the research community needs new ways to analyze large data sets of remote sensing im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000